Chào mừng quý vị đến với Trường THCS Đoàn Lập - Tiên Lãng - Hải Phòng.

Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.

Đề thi HSG toán 9 năm học 2003-2004 tỉnh Hải Dương

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
Nguồn:
Người gửi: Nguyễn Ngọc Huy
Ngày gửi: 14h:00' 26-03-2009
Dung lượng: 37.0 KB
Số lượt tải: 12
Số lượt thích: 0 người
ĐỀ THI HỌC SINH GIỎI TỈNH HẢI DƯƠNG
Môn Toán lớp 9 (2003 - 2004) (Thời gian : 150 phút)
Bài 1 : (2,5 điểm)
Giải phương trình :
|xy - x - y + a| + |x2y2 + x2y + xy2 + xy - 4b| = 0


Bài 2 : (2,5 điểm)
Hai phương trình :
x2 + (a - 1)x + 1 = 0 ; x2 + (b + 1)x + c = 0 có nghiệm chung, đồng thời hai phương trình : x2 + x + a - 1 = 0 và x2 + cx + b + 1 = 0 cũng có nghiệm chung.
Tính giá trị của biểu thức 2004a/(b + c).
Bài 3 : (3,0 điểm)
Cho hai đường tròn tâm O1 và tâm O2 cắt nhau tại A, B. Đường thẳng O1A cắt đường tròn tâm O2 tại D, đường thẳng O2A cắt đường tròn tâm O1 tại C.
Qua A kẻ đường thẳng song song với CD cắt đường tròn tâm O1 tại M và cắt đường tròn tâm O2 tại N.
Chứng minh rằng :
1) Năm điểm B ; C ; D ; O1 ; O2 nằm trên một đường tròn.
2) BC + BD = MN.
Bài 4 : (2,0 điểm) Tìm các số thực x và y thỏa mãn x2 + y2 = 3 và x + y là một số nguyên.
ĐỀ THI HỌC SINH GIỎI TỈNH BÌNH THUẬN
Môn Toán lớp 9 (2003 - 2004) (Thời gian : 150 phút)
Bài 1 : (6 điểm)
1) Chứng minh rằng :

là số nguyên.
2) Tìm tất cả các số tự nhiên có 3 chữ số sao cho :

với n là số nguyên lớn hơn 2.
Bài 2 : (6 điểm)
1) Giải phương trình :


2) Cho Parabol (P) : y = 1/4 x2 và đường thẳng (d) : y = 1/2 x + 2.
a) Vẽ (P) và (d) trên cùng hệ trục tọa độ Oxy.
b) Gọi A, B là giao điểm của (P) và (d). Tìm điểm M trên cung AB của (P) sao cho diện tích tam giác MAB lớn nhất.
c) Tìm điểm N trên trục hoành sao cho NA + NB ngắn nhất.
Bài 3 : (8 điểm)
1) Cho đường tròn tâm O và dây cung BC không qua tâm O. Một điểm A chuyển động trên đường tròn (A khác B, C). Gọi M là trung điểm đoạn AC, H là chân đường vuông góc hạ từ M xuống đường thẳng AB. Chứng tỏ rằng H nằm trên một đường tròn cố định.
2) Cho 2 đường tròn (O, R) và (O’, R’) với R’ > R, cắt nhau tại 2 điểm A, B. Tia OA cắt đường tròn (O’) tại C và tia O’A cắt đường tròn (O) tại D. Tia BD cắt đường tròn ngoại tiếp tam giác ACD tại E. So sánh độ dài các đoạn BC và BE.


 
Gửi ý kiến